

王梓同

王梓同


7 WATER SHADER

Realistic water is one of the core functions of HydroGL. It is achieved by using WebGL shader. We used a normal map to simulate the wave effects.
A normal map is often an RGB-image in which each pixel represents the normal coordinate of that pixel. The normal of a vertice is the vector that
is perpendicular to it. With given normal coordinate that simulates the movement and shape of wave, we can manipulate the water with simple
lighting effect called Phong lighting. Phong lighting is an algorithm for simulating lighting effect on an object, where it consists of ambient light,
diffuse light, and specular light. Diffuse light and specular light are determined by the normals.




WATER SHADER

The code structure of WebGL water shader consists of two parts: vertex shader and fragment shader. Vertex shader is the shader that controls every
vertex of the geometry. Usually, to create a realistic water shader, a wave-like movement of vertices is required. However, because this project
is web-based with limited computation resources and users barely see the geometric movement from a far point of view, we do not modify the
vertices position.

Fragment shader is where we assign the normal coordinate of each pixel on the plane. Firstly, we map the normal texture onto the plane. Then, we
use Phong lighting algorithm to get the realistic lighting effect. As a result, a realistic and animated water plane is created.




WATER GEOMETRY

The outline of the lake is drawn by a map-to-polygon tool, where it can translate
the river outline into coordinates of latitude and longitude. However, we need to
further process the geometry since it only contains the outline, but not as a plane
mesh, which means it does not contain vertices inside the plane. Thus, we applied
Delaunay triangulation, which is to fill the inside part of the plane with triangles.
The wireframe of the lake is shown as the figure below

REALISTIC SCENE

To create a realistic scene, we need to add more objects
onto the lake such as houses, wind turbines, etc.. With
ThreeJS, we can input these models with transformations.
Combining realistic water effect and real-world model, the
3D visualization of hydrolic data becomes more attractive
to the pulic.




USER INTERFACE

To lower the difficulties for users to manipulate the
models, we created User Interface (Ul) for each model

to do transformations. The components of Ul include
position, rotation, scaling, visibility, animation, etc.. Users
can create their own customized scene on client-side web,
which significantly decreases the barriers to use.

« turbinel
pos_X
pos_y

pos_z

rot_x

rot_y

rot z

scale

visible v

Close Controls

GOOGLE MAP API

Google Map API allows satellite maps to be embedded on third-party
websites. Google Map enables us to create realistic scene onto the terrain

map.




WORKFLOW

User Interface

Model transformation
Shader parameters

Weather control

Programmable
functions

Animation

GLSL Shader

Geometry Processing

Main Scene

Backbones

Google Map API

Three.js

WebGL




CASE STUDY

We created three scenes on three different lakes in the US, which are Caney Lake in Louisiana, Pleasant Creek Lake in lowa, and Cedar Lake in
lowa. After programming the essential parts of the library (loading models and adding animation), we built these scenes solely on Ul parameters.
Additionally, we can convert to different scenes by changing the directories of the main script. For each lake, we copied the script of the previous
one and change the Ul parameters directly on the web browser. As a result, CRATES is a flexible and customizable framework for users to build

realistic scenes based on different hydrological data.







